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ABSTRACT 

We give a detailed treatment of the analytic continuation of the 

two Reggeon cut discontinuity formula from above the four-particle 

threshold in the t-channel down to negative t. We confirm the 

negative sign of the two-Pomeranchukon cut contribution to the 

total cross section. We show how the Mandelstam graphs can be 

used as a check on this result. We trace the negative sign to 

signature factors and use this to argue that multi-Pomeranchukon 

cuts should contribute to the total cross section with alternating 

signs. 
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I. INTRODUCTION 

In this paper we give a detailed treatment of the analytic contin- 

u&ion of the discontinuity formula 1-3 
for the two-Reggeon cut from 

t> i6m2, where it is initially derived, to the scattering region t < 0. 

This continuation is not treated in sufficient detail in Ref. 2. and it has 

been suggested4 that a more detailed treatment could lead to a reversal 

of the claimed negative sign for the contribution of the two Pomeron 

cut to the total cross section. However, the analysis we present in this 

paper confirms that the sign is indeed negative. We emphasize that 

this result is based only on the combination of t-channel unitarity with 

standard analyticity assumptions for both multiparticle and Pomeron 

scattering amplitudes. 

As we discuss in Sec. VII, any treatment of the two Reggeon cut 

based on the analytic continuation of multiparticle t-channel unitarity 

to complex angular momentum, must be applicable to the familiar 

Mandelstam Feynman graphs. It then follows from the real analyticity 

property of Pomeron scattering amplitudes that the sign of the two 

Pomeron cut, in (the fullram#litude must be the same as that of the two- 

Reggeon cut given by the Mandelstam graphs, since the signature and 

other kinematic factors are the same in the two cases. This argument 

in one sense confirms our result that the sign of the two Pomeron cut 

is negative . Alternatively we could say that the argument actually 

requires us to prove that we obtain the negative sign in order to check 
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that the precise form of our complex angular momentum analytic con- 

tinuation of multiparticle unitarity5 is correct. In fact we show that the 

negative sign for the two Pomeron cut arises directly from the signature 

factors in the continuation. This is in accord with the dependence on 

signature, of both the Mandelstam graphs and Gribov’s Reggeon calculus, 

for producing a negative sign two Reggeon cut. We also argue that a 

similar treatment of signature for the multi-Pomeron cuts will lead to 

the (expected) general result that they contribute with alternating signs 

to the total cross section. 

In Sec. II we give the Sommerfeld-Watson formula for the two- 

Reggeon cut contribution to the total cross section in order to establish 

notation. In Sec. III we review the derivation of the discontinuity formula 

and isolate where sign changes occur. In Sec. IV we discuss analytic 

continuation of the formula to t small but still greater than zero. This 

stage of the continuation can be checked directly using the Mandelstam 

graphs. In Sec. V we discuss the movement of mass dependent singularities 

offof the physical sheet of the two-Reggeon cut. In Sec. VI we discuss 

continuation from positive to negative t and confirm that the contribution 

of the two Pomeron cut to the total cross section is negative. In Sec. VII 

we discuss the Mandelstam graphs. Section VIII contains a short discussion 

of the relevance of signature for multi-Pomeron cuts. 
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II. THE SOMMERFELD-WATSON REPRESENTATION 

The Sommerfeld-Watson transform gives the contribution of a 

positive signature Regge cut to the asymptotic behavior of the full 

amplitude as 

A(s,t) r~ - ; 

.i=jc(t) 

J 

dj disc a+Q,t) 2jT(-j) [sj + (-sJjl.(2 41 

s- m cos n j r( -j + I/ 2) 

For the two Pomeron cut jc(0)- 1. For j- 1 

. 
r(-j)(1 + e-lTJ) - + ihi;;- 
l-(-j + -iI 2)coS nj 2 (2.2) 

and so 
j=j,(O) 

A&., O)+ - 6 
J 

dj disc a+(j,O)ls[j (2.3) 

It follows then that the sign of the contribution of the two Pomeron cut to 

the total cross section is given by 

where 

- sign [ t disc a+(j,tll (2.4) 

disc a+(j,t) = a+(j+ie,tl - a+(j-ie,tl (2.5) 

where the f ie prescriptions are with respect to the two-Pomeron cut 

itself. 

III. THE DISCONTINUITY FORMULA 

The derivation of the discontinuity formula in Ref. 2 (II) begins 

with the continuation to complex angular momentum of the four-particle 
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unitarity relation in the t-channel. The conventional S-matrix formula 

for the discontinuity across the four-particle cut is shown in Fig. 1. 

The partial-wave projection of this relation written in terms of the 

partialwave amplitudes corresponding to Fig. 2 is (we use the same 

notation as in II) 

aj(t) - a4(t) = 
j 

x a.--(t,ti,t2) a4j-i; 
J! n 

(t,tf’t2) (3.1) 

where (1 i,nfjtlL (1 2, n2, t,) label the angular momentum, the helicity 

and the(nass)’ of two-particle sub-states, as shown in Fig. 2 

A(j,Xn’) = 
(2e,+i)(2~~+i)T(P~-ni+i)T(P2-n~+~)~(j-ni-n~+4) 

r(a i+ni+ 4)r(e2+n2+ i)r(j +ni+n2+i) 

and dp represents a phase-space integration 1 

That part of the sum in (3. 1) in which n1 and n2 have the same sign can 

be continued to complex j in the form 

- &sin ;(j - 7;) 
‘) 
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c 

:4-- 
A(ji?,Z) 9~: a; 

X 

J!,? lnil sint(j-ni-n,- [Ti’ -( -i4’ + ~5’)] I 

+ -i 
I > - < nin2 - -nI, -n2, (3.3) 

> and < refer to n + n 1 ’ 0. 2 c 
There are five signatures 71 . . . -r5 

l-7. 
referingrespectively to j, 1 1, P n n (T.1 = 2 2’ 1’ 2 1 

1). The signature 

factors differ slightly from II, and this is important if odd signature 

Regge poles are considered. The minus sign has appeared in (3. 3) 

simply because of the rewriting of the two helicity sums in (3. 1) in terms 

of contour integrals. It disappears again once the residue of helicity 

poles in 

aT (j,T,z,t,ti,t2) at Pi = n1 = @(t,), P2 =n2 = @tt2) 

is taken by pulling the ni and n2 contours in (3. 3) to the left in their 

respective planes. 

A further minus sign is introduced if, as in II, we use subenergy 

discontinuity formulae to replace 

-t * 

by 8: aT>4-Ta T2 aT3. (a 7i being the Froissart -Gribov continuation of 

the four-point function) and replace 
/ 

dp by a contour integral around 

the two-particle thresholds at tl =~ 4m2 and t2 = 4m2. 

The residue of the helicity poles at n1 = &i) and n2 = act,) now 

contains a pole at j = cu(tl) + a(t,) - 1 coming from the pole at 
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j = *1 + n2 - 1 in h(j,?,Z). The collision of this pole with the 

boundary of the phase-space integral / dp generates the two-Reggeon 

cut. Before writing down the discontinuity formula we note that an 

important sign change comes from the signature factors in (3. 3). Since 

these are evaluated at j = n1 -F n2 - 1 we can write their collective 

contributions as 

S Ti’ 74’ T5’ = 
sin z (j - TV’) 

CYla2 sin z (al - ‘4 )sin rr (c2- 7; )sin : r-1-T; + (T,‘fT;)l 
2 

(3.5) 

If we now take ai and a2 to be the Pomeranchukon so that 

Ti 
‘=7’=~‘=Oanda,a 

4 5 1 2-j - 1 we obtain 

T1’T4’ T5’ = sinrrj 
S 2 - -1 (3.6) 

Ly1 a2 .TI .TI sm z ai sm 2 a2 

Taking account of the sign changes in (3.4) and (3.6) [and the 

removal of the - sign from (3. 1) in taking the residue of helicity poles1 

the two Reggeon cut discontinuity obtained from (3. 3) is equation (2. 21) 

of II, that is (note that a(j, t) which appears in the followingformulae is 

the Froissart-Gribov amplitude which satisfies the Carlson condition in 

t >$m2 , and differs from the amplitude which appears in (2.3) by a 

phase--see (4. 3). 1 
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disc a(j, 

j=jc 

dt X” ‘(t t t ) 
,t) = disc 

1 2 ’ 1’ 2 -~ 
j =j 

= .TT 
C 

+i)sin’~aism~a2 

(3.7) 

where 

disc a(j,t) = a(j+ie.t) - a(j-ie,t) (3.8) 
j =j 

C 

and N 
2 

(j, t ), when evaluated at j =(~i + a2 - 1, is the “fixed-pole residue’ 

of the particle/Reggeon scattering amplitude. Nz(j, t) is the same 

amplitude evaluated below its four -particle cut in the t-plane. 

The singularity of the right-hand side of (3.7) occurs partly from 

the generation of the branch-point in the integral and partly from the 

presence of the cut in N In II we showed how 
s 

(j,t) [but not in N:(j, t)l . 

the full unitarity equations for the six and eight-particle amplitudes 

could be manipulated to give the result that the complete discontinuity 

can be expressed as the discontinuity generated in the integral of (3.7), 

provided that N:(j,t) N$j, t) is replaced by Na(j+, t) NS(j-,t). * refer to 
rr) 

f ie prescriptions in the j-plane with respect to the two-Reggeon cut in 

N (j,t). 
2 

The final discontinuity formula we gave was therefore 

-shZj c 

disc a(j,t) = 4 
2 l I dti 

-dt2 A1’2(t,tI,t2) 

ti 
t sm 2 5, 1 sin z @2 
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x 6 (j-a,-02+4)Na(j+,t)N (j-,t) (3.9) 
3 

where t +,t- are two solutions ofX(t,tt,t2) = 0 satisfying j-a(tl) -c2(t2) 

+i =o. The 6 function is the result of formally taking the discontinuity 

of the branch-point generated in (3. 7) when the pole at j = (Ye + a2 - 1 

hits the boundary of the phase-space at X(t, tl, t2) = 0. However, 

because of the two-dimensional phase-space involved the collision of 

the pole with the boundary of the integration region is a little more 

subtle than (3.9) suggests. At this stage therefore, the 6 -function in 

(3.9) must be regarded as symbolic only and representing &- x a 

Cauchy contour integral around the pole at j = LYE + cu2 - 1, in a sense 

which we have yet to determine. 

IV. ANALYTIC CONTINUATION TO t2 0 

In this section we consider continuation of the discontinuity formula 

down to t positive but near zero. We do this by using a simple t + ie 

prescription for continuing past all other singularities encountered on 

the way. On general grounds we would expect this to be the right 

prescription for obtaining the high-energy behavior in the cross channel. 

In the next section we show that this has to be the case since this is the 

continuation which moves all mass-dependent singularities from the 

physical sheet of the j-plane. 

The analysis in II which leads to (3.7) and (3.9) is all carried out 

above the four-particle threshold in the t-channel. Therefore in an 
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equal mass theory with mass m the formula is initially derived for 

t, 16 m2. An important part of the continuation to small t is the treat- 

ment of threshold factors in NCY(j. t ), which have to be removed to obtain 

an amplitude which is real analytic for small t. This was discussed in 

II. We extract the threshold at X = 0 in N$j,t) by writing 

j-al-a2 

N3(j,t) = Ca(jft) t ’ 
- 0 

(4.1) 

Since N 
Y 

(j, t) is analagous to the Froissart-Gribov projection of an 

unequal mass scattering amplitude (m + m + t 
1 + t 2) it will also have 

threshold behavior of the usual form at t = 4m2. Therefore, for t c 4m2 
iRj, ” 

it is e ’ C (j,t) which is real analytic and so satisfies 
5 

i Ej .=. 

* 17 

[e ’ C,T(j+,t)l = [e 
2 

Ckj-.t)l (4.2) 

i Ej 

[ The e ’ factor in this equation is unfortunately replaced by .‘“I in 

II, although this does not affect the final sign. 1 

The simplest way to deal with this last threshold behavior is to 

irj izj 
redefine a(j,t)and N and e 

5 
(j,t) in (3. 7) by multiplying by e 

respectively. If we similarly redefine Cdj, t) in (4.1), then we can 

rewrite (3.9) entirely in terms of amplitudes which are real analytic 

int<4m2 

-sin :j c 

disc a(j,t) = 
J- I dti 

d(j-ai 

z6 
dt2 X1’ 2 

-Ly2+1) 

j=jc 
tl 

(t,tl’t2) 
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C (j+,t)C (j-,t) 
X 

cg p 
.Tr .lT 1 (4.3) 

sln z a4 -T @2 

where [ I will be real and positive in t < 4m2. a(j, t) is now the 

amplitude which appears in (2. 3). 

To be specific about the definition of the 6 -function in (4. 3 ) we 

have to reconsider the generation of the branch-point in (3.7). We shall 

base our analysis on that of Simonov. 6 For t7 i6m2 the projection of 

the integration region for (3.7) in the (tl, t2) plane is shown in Fig. 3. 

It is important to note that the boundaries of the integration region at 

tl 
= 4m2, t2=4m2 are not fixed, but rather if we consider the projection 

of the integration region in the tt -plane (for fixed t2) we see the integration 

contour shown in Fig. 4. This will be particularly important in the 

next section. 

Consider the projection of the integration region in the plane of the 

variable z = a(ti) .+ cz(t2) - i. This is shown in Fig. 5. Since 0(t) 

will be singular at t = 4m2, the parts of integration contour which are 

on separate sheets of the tt and t2 thresholds are separated in this plane. 

We denote the part of the contour with a tie prescription with respect 

to both thresholds by z++, that with a -ic prescription for ti only by 

z-+ etc. z ++ and z-+ are shown in Fig. 5. We have drawn the 

relative positions of z = 2a (i) - 1 and z = Q [ (w-m)‘] + o(4m2) -1 

differently from Simonov. 
6 It can easily be checked that our configuration 

is qualitatively correct if a(t) has a fractional power branch point at 
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t =4m2 , as would be expected. Because of the symmetry of the 

integration region for z++ under t - t2, the region for z++ shown in 1 

Fig. 5 is in fact covered twice, with the boundary between 20 ($) - 1 

and 2a(4m2) - 1 providing the link. 

The pole at j = (Y (tl ) + a (t 2) - 1 appears as a single point at z = j. 

A singularity of the integral arises whenever the pole collides with one of 

the singular points of the boundary of the integration region. Jn this 

section we consider only the two-Reggeon branch-point which occurs 

t 
when the pole collides with the singular point z = 2a (;i: ) - 1. [ Note that 

this is not a singular point for a-+, 
* t 

although z = 2a (z) - 1 will be for 

z __. 1 We, therefore, concentrate on the neighborhood of z = Z@(i) - 1 

in Fig. 5. We can add a third dimension to represent the two-dimensional 

nature of the integration for example, Re [ cu(tl) - @(t2)1 . The resulting 

three-dimensional picture is shown in Fig. 6. 

As we continue to t < t6m2 (using a +ir prescription) the point 

z = 2@ (d ) - 1 moves down onto the real axis in an anti-clockwise direction 

around t = 16m2. The shell of Fig. 6 flattens out and we obtain the 

picture shown in Fig. 7 The vital point is that for j z Zcz(i ) - 1 the 

pole at z = j lies above the integration region in the z-plane. That is it 

has a “+ie” prescription relative to the integration region. 

The integration contour has moved from a region X(t, ti, t2) z 0 to 

a region in which A(t, t+, 2 t ) < 0 during the course of this continuation. 

Because of our +ie prescription the contour has moved through the 

upper half A-plane and SO 
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1 -+ 1 -i 
,112 

(t,t,>t,) i[ -A(t,ti,t2)1 I" [-A(t,ti,t2)1 "' 

(4.4) 

Since both the ti and t2 integrations are reversed in direction by this 

continuation there is no net change of sign of the integration measure. 

We can now evaluate a certain discontinuity in a simple way and 

this will be sufficient to check that we have the right sign for the 

Mandelstam graphs which we discuss in Sec. VII. Suppose that in the 

j-plane we continue down to j = Zcz(i) - 1 and continue around the branch 

point in an anti-clockwise direction. The pole at z = j moves around the 

integration contour is the z-plane, as shown in Fig. 8. The resulting 

discontinuity in the integral around the pole at z = j in the direction shown 

in Fig. 9. This together with a minus sign coming from the fact that 

the intregral in (3.7) contains (j-z) 
-1 = - (z-j)-' tells us that the contour 

integral around the pole implied by (3.9) has to be interpreted as 

- 2xi 6(j -cul-(Y2+l) (4.5) 

where the 6 -function has the usual meaning 

[f(j,t ,t )I .- 
1 2 J-a1+(Y2-1 

(4.6) 

Using (4.4) and (4. 5) we therefore have that the discontinuity we have 

evaluated (dsc ) is given by 
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isin rrj 
dgca(j,t) = - 

2 6[j-cu(tl) - a(t2) + 11 

z6 [ -Ut,tiA2)i’2] 

X 

C (j+,t) Lg C (j-,t) 

sin$a(tl) sin50(t2) 1 (4.7) 

This discontinuity is that obtained by drawing a branch cut to the 

right in the j-plane, rather than the left. .+ 
C,(J , t) will not be simply 

related to CLy(j-, t) in general, and we cannot use the real analyticity 

property of Ciy(j, t) to conclude that [ 1 in (4. 7) is real and positive. 

Also if we try to evaluate the discontinuity obtained by drawing the 

branch-cut to the left we encounter the complication that the integration 

region of Fig. 4. 5 will be distorted to complex ti and t2 by the pole at 

j = cr(tl) + a(t2) - 1, if we continue around the branch-point in a clock- 

wise direction. This problem can only be avoided by performing the 

further analytic continuation to negative t which we discuss in Sec. VI. 

However, suppose we assume that Cs(j, t ) has no branch-point at 

j = Zu(i) - 1, as would be the case for the Mandelstam graphs. C$(j,t) 

will then be real and the branch-point given by (4.7) will simply be 

logarithmic. The discontinuity evaluated either with the branch-cut 

drawn to the right or the left will be a simple imaginary constant and the 

only question remaining will be the sign. In fact since all factors in (4.7) 

apart from the overall minus sign, are now real and positive it follows 

that the discontinuity we have evaluated is negative. The discontinuity 

required for (2.3) is obtained by rotating the branch-cut through 180’ 
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in the lower half j-plane as shown in Fig. 10. It follows then that 

discia(jlt) = t [al(j,t) - a2(j,t)l =+ [a(j-ie,t) - a(j+ie,t)l (4.8) 

LO (4.9 ) 

and so from (2.3 ) and (2. 5) the cut will contribute negatively to the total 

cross section. This result is for the moment dependent on the neglect 

of the branch point in C 
2 

(j, t),but it is already sufficient to show that we 

will obtain the correct sign for the Mandelstam graphs and so confirms 

the correctness of our j-plane analytic continuation of multiparticle 

unitarity. 

V. THE MASS-DEPENDENT SINGULARITIES 

Further singularities besides the two-Reggeon cut will be generated 

in (3.7) as follows. A branch point at 

j = cu[ (-K-2m)21 + e(4m2) -1 (5.1) 

will be generated when the integration contour is trapped by the pole at 

j = cu(t,) + a(t2) - 1 together with the singularities of the integrand at 

k(t,tl,t2) = 0 and tt or t2 = 4m2. Also a branch point will be generated at 

j = 2m(4m2) - 1 (5.2) 

when the contour is trapped by the pole at j = a(tl) + cu(t2) - 1 and the 

thresholds at both tl = 4m2 and t2 = 4m2. 

In terms of the z-plane projection of the integration contour shown 
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in Fig. 4. 3 the branch points (5.1) and (5. 2) arise when the pole at 

z = j collides with the singular points of the boundary at z = cy[ (a-2m)‘l 

+ a(4m2) - 1 and z = 2a(4m2) -1 respectively. However, as we discussed 

in thelast section,the boundaries of the integration region at tl, t2 = 4m2 

are not fixed and if the contour is extended below these points in the ti 

and t2-planes then the a++ integration region in Fig. 5 will be distorted 

as shown by the dotted line. This shows that the singularities (5.1) and 

(5.2) will only be generated if a path in the j-plane is taken so that the 

pole at z=j moves along the path (i) shown in Fig. 5. In this case the 

boundary of the integration region can be trapped by the pole and the 

thresholds at tl and t2 = 4m2. However, if path (ii) is taken in the 

j-plane then the pole at z=j and the thresholds will be on the same side 

of the contour and no trapping of the contour can occur. 

Since paths (i) and (ii) involve different routes around the two- 

Reggeon cut it is clear that the mass-dependent singularities occur only 

on one,sheet of the two-Reggeon cut. These singularities appear to the 

right of the two-Reggeon cut in the j-plane, for t L 16 m2. Therefore, 

they must be absent from the “physical sheet ” of the two-Reggeon cut if 

the Froissart bound is not to be violated at t = 0. 

If we draw the cut attached to the two-Reggeon branch point to the 

left in the j-plane, as in Fig. 11,. then it follows from the above 

analysis that the singularities (5.1) and (5. 2) can only be reached by 

” burrowing down” through the cut as indicated by the arrow. It should 
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then be clear that these singularities will indeed he on the unphysical 

sheet of the two-Reggeon cut for tc 16 m‘ . if we use the +ie prescription 

of thelast section. In this case the branch point at j = ZLY (2) - 1 simply 

moves around t = 16 m2 in an anti-clockwise direction leaving the sheets 

on which (5.1) and (5. 2) are singular hidden. 

In Ref. 7 we discussed the three-particle unitarity integral in 

detail and showed that the Reggeon-particle cut at j = cy[(.fi- m)‘] -1 

is generated in that integral. The Reggeon-particle cut is a mass- 

dependent singularity which also moves onto the unphysical sheet of the two- 

Reggeon cut for small t. In II we showed that this happens by considering 

the generation of the Reggeon particle cut in the two-Reggeon cut 

discontinuity. 

In fact there are other singularities at j = ru(4mL) -1 and j = ~(0) -1 

which are generated in the three-particle integral in the analagous way 

to the generation of (5.1) and (5. 2) in the four-particle integral. The 

simplest way to show that these singularities also move onto the unphysical 

sheet of the two-Reggeon cut is to include the three-particle unitarity 

relation in the four-particle relation as discussed by Simonov. 6 The full 

amplitude can then be reconstructed from a dispersion relation. We do 

not intend to discuss the details here and so we simply state Simonov’s 

conclusion. 

For t z 16 m2 the two-Reggeon cut can shield these singularities 

as we have shown in Fig. 11. Using a +i.e prescription in the t-plane 
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the same sheet of the two-Reggeon cut is shown in Figs. 12 and .13 for 

9 rn2d t c 16 m2 and t ( 4m2 respectively. With the cut drawn as shown 

none of the other branch points are singular on the physical sheet. 

VI. ANALYTIC CONTINUATION TO t -z 0 

Since X (t, ti, t,) 4 t ‘I2 it appears, at first sight, that 
t-+0, t4=t2 

(4. 7) and also (3.7) may be singular at t =O. ,A simple way to see 

that this is not the case is to consider directly the integral 

1 
I(j) t ) = dt4 dt2 

x4 0 
r -x(t,t,,t,)l i’2[ j - a(t,) - cu(t,) + 1 + iel 

(6.1) 

and rewrite this in terms of the variables 

ti +t 
2 ti - t2 x = 2 Y= 2 (6.2) 

We assume that the trajectory is approximately linear at t =O. 

[ If we were to take olp(0)c 1 then we would expect the trajectory to be 

analytic at t-0 and this would be sufficient for the following argument. 

For apup = 1 we are assuming that weak coupling takes place so that 

the trajectory function is only mildly affected by multi-Pomeranchukon 

cuts. 1 (6.1) becomes 
m m 

1 

(-t2+4xt - y 2 ) 112. (J - 2~‘x - 1 +ic ) 

4t (6.3) 
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Changing variables, yet again, to 

yJ = y,ti’2 X’̂  x- (t+y’2) 

4 (6.4) 

m m 

1 
I (j,t) 

1 
= 

2 [ x’l I’ 
2 I2 (6.5) 

j - - 0 2a’[x’+*l 1 +ie -02 

which is clearly not singular at t=O, although (6.1) appears to be. We 

can now use Cauchy s theorem to perform two successive transformations 

on (6.5). First we rotate the x’-contour through 180’ in the lower half 

x/-plane so that 

/ 
~dx’ Ix’] -ih--3 -i [ ex’] -‘I2 dx’ 

0 -co 

Then we rotate the y/-contour through 90’ so that 

dy' = -i dy ” 
-03 +im -03 

(6.7) 

where y’= i yq. So now (6.5) becomes 

m co 

1 
82 

-co -co [j-20’(xr+t+)-11 

(6.8) 

The integration region and the pole in the intregrand are shown in the 

(x’,y”) plane in Fig. 14 for j 7 Q’$ + 1 and it is obvious that the 
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discontinuity given by the collision of the pole and the boundary of the 

integration at x ’ = 0 is 

I(j+ic ,t) - I(j -ie,t) = +*i 6 [j - Zru’(x’Lt-yl2) - I] 
4 

(6.9) 

(6.1) corresponds directly to (3.7) (evaluated for t> 0) if we insert 

(4.1) and (4.4) and ignore both the branch-point in C (j,t) and all other 
52 

irrelevant factors. Since the integration in (6. 9) is over imaginary 

tl -t2 
Y = 2t1/2 ’ 

it will be over complex values of ti and t2 for t positive. 

This is why we did not use (6.9) for positive t in Sec.IV. However, we 

can use (6.1) - (6.9) to continue (3.7) to negative t and take the dis- 

continuity we want. Imaginary y’ corresponds to real tl and t2 for 

negative t and so (6. 9) gives directly that for negative t 
+ 

6(j - 
disc a(j,t) = + 

cui-a2 + 1) 

j =jc [ -x(t,ti’t2)l i’2 

x 1 (6. 10) 

Since all factors pin, (6. 10) apart from the i are now real and positive, 

it follows from (2. 3) that the two-Pomeranchukon cut contributes negatively 

to the total cross section. 

VII. THE MANDELSTAM GRAPHS 

In this section we shall show that previous studies 
8-10 

of the 
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Mandelstam graphs in weak-coupling. $3 perturbation theory can be 

used to check our analytic continuation. 

The Mandelstam graphs are the set of Feynman graphs shown in 

Fig. 15. This set of graphs satisfies t-channel unitarity to a limited 

extent . Firstly, the lowest intermediate state in the t-channel is the 

four-particle state and the discontinuity is of the form shown in Fig. 1. 

The six-particle amplitude appearing on the right-hand side of Fig. 1 

is shown in Fig. 16. This set of graphs also satisfies two-particle 

unitarity in both the t4 and t2 subchannels as illustrated in Fig. 17. 

The relevant four-point function now being the set of ladder graphs. 

It follows then that the Mandelstam graphs satisfy all of the t-channel 

unitarity equations necessary to obtain (3.7) (apart from those needed 

to study iterations of the two-Reggeon cut. ) Therefore, our analysis 

must apply directly to the two-Reggeon cut asymptotic behavior of the 

Mandelstam graphs. In particular, then, our analytic continuation 

must give the correct sign. 
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These graphs can, of course, only be analysed in detail in the 

weak coupling limit, when the trajectory cu(t ) = -1 + 0 (g’), so that the 

trajectory of the two-Reggeon cut is a$) = -3 + 0 (g’). Also, as Halliday 

and Sachrajda emphasize, 
10 

the known minus sign for the two-Reggeon 

cut depends crucially on adding both untwisted and twisted ladder 

graphs so that the ladder graph Reggeons have definite (even) signature. 

In this case T’ = 7; = 72 = 0, cv4~ a2& -1, j- -3 and we have from 

(3. 5) that 

STiTiTL 

3rr sin (-- 
2 ) 

ai c2 2 
(sin - 5) sin (-: ) 

(7.1) 

= -1 

Therefore, S 
7;7>7; 

culLy2 
has the same sign as for the two-Pomeranchukon 

cut and since all other factors are the same our analysis will give a 

negative sign for the Mandelstam graphs. 

Note that if we took 74 = ~5 = +1 we would obtain 

sTiTiTk +1 
@lcu2 

>> 1 (7.2) 
sin :(a1 - l)sin:(ru2- 1) f2p~-1 

so that for odd-signature Reggeons we obtain a positive sign. For 

unsignatured ladders in the Mandelstam graphs, we effectively have 

degenerate Regge trajectories of both signatures. Since (7. 2) is much 

larger than (7. 1) the positive sign contribution will dominate over the 

negative sign contribution and we will again obtain the correct positive 

sign for the unsignatured Mandelstam graphs. 
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VIII. DISCUSSION--MULTI-POMERANCHUKON CUTS 

It is clear from our comparison with the Mandelstam graphs in the 

last section that it is the treatment of signature that is the vital 

factor in giving the negative sign for the two Pomeranchukon cut. The 

various minus signs and factors of i which arise in (3.4), (4.4) and (4. 5) 

from phase-space factors and analytic continuation problems all cancel 

and the controlling factor is the “signature factor” S 
r;rp; 

defined in 
95 

(3..5). This result is also in agreement with Gribov’s treatment of hybrid 

Feynman diagrams leading to the Reggeon calculus. 12 In Gribov’s work 

it is the ” signature factor” which gives the negative sign for the two 

Pomeranchukon cut. 

In fact we can really trace the sign to the last factor in the denominator 

of (3. 5), that is 

= sin + (j -nf -n2) for T;=T~/=T;=~ (8.1) 

This factor arises from our Sommerfeld-Watson transformation of 

the helicity sums in the four-particle unitarity relation and j-n, -n2 = -1 

because of the generation of the two Reggeon cut by the nonsense wrong- 

signature fixed-pole at j = nt +n 2 - 1. It is clear from the work of Gribov, 

Pomeranchukon and Ter Martirosyan’ that two nonsense fixed-poles are 

involved in generating the three-Reggeon cut in the six-particle unitarity 
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integral as illustrated in Fig. 18. First two Regge poles at P 2=n2= Lu(t2), 

I3 3 
=,Il = aft,) and a nonsense fixed-pole at 1 1 snl =n2+n3 - 1 give a 

pole in the ni -plane at ni = ~~(t~)+cz((t~)- 1. This combines with a 

Regge pole at n4 = I 4 = a(t4) and a nonsense fixed pole at j = nf +n4 - 1 

to give a pole at j = cu(t,) + a(t 3) + act,) - 1 and this finally leads to the three- 

Reggeon cut. It seems reasonable to assume that, as for the two 

Reggeon cut, all minus signs coming from phase-space factors cancel 

so that the overall sign of the three-Reggeon cut will be governed by the 

Ggnature factors. Since there will now be two factors of the form of 

(8.1) we can expect the sign of the three-Pomeranchukon cut to come 

out positive. 

In general the generation of the N-Reggeon cut in the 2N particle 

unitarity integral involves (N-l) nonsense fixed-poles and so we expect 

that the N-Pomeranchukon cut will contribute to the total cross section 

with a factor (-1) 
N-i 

. This is, of course,in agreement-with Gribov’s 

treatment of hybrid Feynman diagrams 
12 

but it is interesting to see that 

we can expect the result to emerge in a general way from t-channel 

unitarity. 
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FIGURE CAPTIONS 

Four-particle unitarity. 

Partial-wave coupling scheme. 

Integration region for the four-particle unitarity integral. 

Projection in the tf-plane. 

Projection in the z-plane. 

The contour in three dimensions. 

The contour in t < 16 m2. 

Movement of the pole at z=j. 

The Cauchy integration around the pole. 

Rotation of the branch cut in the j-plane. 

The j-plane for t > 16 m2. 

The j-plane for 4 m2 < t < 16 m2. 

The j-plane for t < 4 m2. 

The integration region in the (x’ , y”) plane. 

The Mandelstam graphs. 

The 2 -f 4 amplitude. 

Sub-channel unitarity. 

Generation of the three-Reggeon cut. 
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